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Abstract: 

An exploration of the development of Bézier curves and a further study of their properties which 

suit them to be widely used in computer graphics, along with their origin in Bernstein 

polynomials and the Weierstrass approximation theorem. In general, the paper follows the 

chronological order in which the Bézier curves were developed.  
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Introduction 

The realm of computer graphics is a wonderful playground for the mathematician. The 

challenges of jumping from the continuous to the discrete and back, and the need for more 

elegant representations of geometric structures to shave milliseconds off a program cycle has 

reawaken interest in fields of mathematics that were perhaps once seen as mere fanciful 

curiosities. Several of these once obscure theorems have been dusted off and pushed to the 

forefront of daily use. It is both fascinating and encouraging that several mathematicians were 

exploring curiosities for their own curiosity sake, and stumbled upon an observation that would 

later form the foundation of tangible constructions in the modern world.  

Of course, the mathematics behind computer graphics are too vast for any single book, much less 

this paper. The scope of this paper will be narrowed to an exploration of Bézier curves, a 

structure who’s history, like so many other applied mathematical structures, began as abstract 

curiosity. However, unlike many fields of mathematics who’s development is harder to trace, as 

their proofs, theorems, and notation have been refined over the ages, Bézier curves enjoy a 

periodic development that corresponds to the way in which we derive them. That is to say, we 

derive them in the same order as they were developed, which gives wonderful insight into their 

evolution. What would become one of the most efficient and widely used methods of modern 

curve rendering, all started, as you will see ahead, by a derivation beginning with the number 1.  
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Section 1 Bernstein Polynomials 

Polynomials are useful tools in mathematics as they are simply defined, can mimic other 

functions, and can be computed quickly. The Bernstein polynomial emerged from the field of 

numerical analysis and is named after Serge Bernstein, a Soviet mathematician who is the first to 

utilize them in a constructive proof for the Stone-Weierstrass approximation theorem.  

Section 1.1 Deriving the Bernstein polynomial. 

The Bernstein polynomial of degree 𝑛 is defined as 

𝐵𝑖
𝑛(𝑢) = (

𝑛

𝑖
) 𝑢𝑖(1 − 𝑢)𝑛−𝑖,    𝑢 ∈ 𝐑,   𝑖 = 0,… , 𝑛  

where for mathematical convenience, 𝐵𝑖
𝑛(𝑢) is defined such that 𝐵𝑖

𝑛(𝑢) = 0 if 𝑖 < 0 or 𝑖 > 𝑛.  

[1, pg. 3]. We obtain the Bernstein polynomial by using the binomial expansion formula, 

(𝑎 + 𝑏)𝑛 = ∑(
𝑛

𝑖
)

𝑛

𝑖=0

𝑎𝑖𝑏𝑛−𝑖 

to represent the expansion that equates to 1, which gives us the Bernstein polynomial, 

1 = (𝑢 + (1 − 𝑢))𝑛 = ∑(
𝑛

𝑖
)

𝑛

𝑖=0

𝑢𝑖(1 − 𝑢)𝑛−𝑖 

Theorem 1.1. Bernstein polynomials form a partition of unity [2, pg. 10]. 
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Proof. A set of functions 𝑓𝑖(𝑡) is said to partition unity if they sum to 1 for all values of 𝑡. As we 

see from the construction of the Bernstein polynomial,  

∑𝐵𝑖
𝑛(𝑢) =

𝑛

𝑖=0

∑(
𝑛

𝑖
)

𝑛

𝑖=0

𝑢𝑖(1 − 𝑢)𝑛−𝑖 = 1       

∎ 

A few examples of the first Bernstein polynomials are: 

𝐵0
0(𝑢) = 1  

𝐵0
1(𝑢) = 1 − 𝑢 𝐵1

1(𝑢) = 𝑢 

𝐵0
2(𝑢) = (1 − 𝑢)2 𝐵1

2(𝑢) = 2𝑢(1 − 𝑢)      𝐵2
2(𝑢) = 𝑢2 

𝐵0
3(𝑢) = (1 − 𝑢)3 𝐵1

3(𝑢) = 3𝑢(1 − 𝑢)2      𝐵2
3(𝑢) = 3𝑢2(1 − 𝑢)      𝐵3

3(𝑢) = 𝑢3 

[1, pg.3] 

 

Figure 1.1 Bernstein Basis polynomials of degree 1, 2, and 3 [1, pg.4,5]. 

Using the following identity, we can construct a recursive definition: 

(
𝑛 + 1

𝑖
) = (

𝑛

𝑖 − 1
) + (

𝑛

𝑖
)  



7 
 

Consider the polynomials 𝐵𝑖−1
𝑛 (𝑢) and 𝐵𝑖

𝑛(𝑢). Multiplying them by 𝑢 and (1 − 𝑢), respectively, 

we obtain 

𝑢𝐵𝑖−1
𝑛 (𝑢) = 𝑢 [(

𝑛

𝑖 − 1
) 𝑢𝑖−1(1 − 𝑢)𝑛+𝑖−1] = (

𝑛

𝑖 − 1
)𝑢𝑖(1 − 𝑢)𝑛+1−𝑖 

(1 − 𝑢)𝐵𝑖
𝑛(𝑢) = 𝑢 [(

𝑛

𝑖
) 𝑢𝑖(1 − 𝑢)𝑛+𝑖] = (

𝑛

𝑖
) 𝑢𝑖(1 − 𝑢)𝑛+1−𝑖 

Then adding 𝑢𝐵𝑖−1
𝑛 (𝑢) and (1 − 𝑢)𝐵𝑖

𝑛(𝑢) together, we get 

𝑢𝐵𝑖−1
𝑛 (𝑢) + (1 − 𝑢)𝐵𝑖

𝑛(𝑢) = (
𝑛

𝑖 − 1
) 𝑢𝑖(1 − 𝑢)𝑛+1−𝑖 + (

𝑛

𝑖
) 𝑢𝑖(1 − 𝑢)𝑛+1−𝑖 

                        = 𝑢𝑖(1 − 𝑢)𝑛+1−𝑖 [(
𝑛

𝑖 − 1
) + (

𝑛

𝑖
)] 

        = 𝑢𝑖(1 − 𝑢)𝑛+1−𝑖 (
𝑛 + 1

𝑖
) 

= 𝐵𝑖
𝑛+1 

Thus, we obtain the recursive formula 𝐵𝑖
𝑛+1(𝑢) = 𝑢𝐵𝑖−1

𝑛 (𝑢) + (1 − 𝑢)𝐵𝑖
𝑛(𝑢) [2, pg. 10]. 

We can represent the computation of the Bernstein polynomials up to degree 𝑛 in the triangle 

below, where polynomials along the horizontal represent 1 − 𝑢, and polynomials along the 

diagonal represent 𝑢. 

1 =  𝐵0
0        𝐵0

1        𝐵0
2         ⋯       𝐵0

𝑛 

        𝐵1
1        𝐵1

2         ⋯       𝐵1
𝑛 

                     𝐵2
2         ⋯       𝐵2

𝑛 
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                              ⋱           ⋮ 

                                             𝐵𝑛
𝑛 

[2, pg. 11] 

Theorem 1.2. Bernstein polynomials are non-negative on the interval [0,1], and are strictly 

positive on the open interval (0,1) [1, pg. 6]. 

Proof. To prove this, we will use mathematical induction on the previously defined recursive 

definition. 

Basis case: 𝐵0
0(𝑢) = 1 ≥ 0 

Inductive hypothesis: Assume 𝐵𝑖
𝑛(𝑢) ≥ 0 for all 𝑖, 𝑗 < 𝑛 for some 𝑛. 

By our recursive definition, 𝐵𝑖
𝑛+1(𝑢) = 𝑢𝐵𝑖−1

𝑛 (𝑢) + (1 − 𝑢)𝐵𝑖
𝑛(𝑢). Since the right-hand side of 

the equation consists of all non-negative components (recall, if 𝑖 < 0, then 𝐵𝑖
𝑛(𝑢) = 0), we can 

conclude that 𝐵𝑖
𝑛+1(𝑢) ≥ 0 for 0 ≤ 𝑢 ≤ 1. Therefore, by induction, all Bernstein polynomials 

are nonnegative for 0 ≤ 𝑢 ≤ 1. Modifying our hypothesis to be the open set 0 < 𝑢 < 1, we see 

that 𝐵𝑖
𝑛(𝑢) is strictly positive [1, pg. 6]. 

 ∎ 

Other properties include that they are symmetric,   𝐵𝑖
𝑛(𝑢) = 𝐵𝑖

𝑛−1(1 − 𝑢) 

They have roots at 0 and 1 only,     𝐵𝑖
𝑛(0) = 𝐵𝑛−𝑖

𝑛 (1) = {
1    𝑖 = 0
0    𝑖 > 0

 

Theorem 1.3. Bernstein polynomials are linearly independent [2, pg. 1]. 
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Proof. We will show that if the sum of Bernstein polynomials equal zero, then all its coefficients 

are zero. Let 𝑐𝑖 be the coefficient of 𝐵𝑖
𝑛(𝑢). We have  

∑𝑐𝑖𝑢
𝑖(1 − 𝑢)𝑛−𝑖

𝑛

𝑖=0

= 0 

Dividing both sides by (1 − 𝑢)𝑛, we get 

∑𝑐𝑖𝑢
𝑖(1 − 𝑢)−𝑖

𝑛

𝑖=0

= 0 

Let 𝑠𝑖 = 𝑢𝑖(1 − 𝑢)−𝑖, then 

∑𝑐𝑖𝑠𝑖

𝑛

𝑖=0

= 0 

The linear independence property states that for a basis 𝐵 = {𝑣1, 𝑣2, … , 𝑣𝑛} which is a finite 

subset of a vector space over a field 𝐅 then for all  𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝐅, if 𝑎1𝑣1 + ⋯+ 𝑎𝑛𝑣𝑛 = 0, 

then necessarily 𝑎1 = ⋯ = 𝑎𝑛 = 0. From our summation above, we have 𝑐0𝑠0 + ⋯+ 𝑐𝑛𝑠𝑛, 

which implies that 𝑐0 = ⋯ = 𝑐𝑛 = 0 and thus establishes linear independence. ∎ 

[2, pg. 1,2] 

Section 1.2 The Weierstrass Approximation Theorem 

To conclude our discussion of Bernstein polynomials, we will explore them in their intended 

design to prove the Weierstrass approximation theorem. The intent of the theorem is to 

demonstrate that any continuous function can be uniformly approximated over a closed interval 

with unlimited precision. Note that this differs from the familiar Taylor series as the Weierstrass 
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approximation theorem does not require that the function be differentiable. Also the Weierstrass 

approximation theorem approximates a function over an interval, rather than a single point.  

Theorem 1.4. The Weierstrass Approximation Theorem 

If 𝐹(𝑥) is any continuous function in the interval [0, 1], it is always possible, regardless of how 

small 𝜀, to determine a polynomial 𝐸𝑛(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 + ⋯+ 𝑎𝑛 of degree 𝑛 high enough 

such that we have |𝐹(𝑥) − 𝐸𝑛(𝑥)| < 𝜀 for every point in the interval under consideration. 

Proof. Consider an event 𝐴, whose probability is equal to 𝑥. Suppose 𝑛 experiments are 

conducted and it is agreed that the player will be payed a sum of 𝐹 (
𝑖

𝑛
), if event 𝐴 occurs 𝑖 times. 

Using the binomial probability formula, we obtain the expected value 𝐸𝑛 where 

𝐸𝑛 = ∑𝐹 (
𝑖

𝑛
) ∙ (

𝑛
𝑖
) 𝑥𝑖(1 − 𝑥)𝑛−𝑖

𝑛

𝑖=0

 

Because 𝐹(𝑥) is continuous, it is possible to find a number 𝛿 such that |𝑥 − 𝑥0| ≤ 𝛿 which 

implies that 

|𝐹(𝑥) − 𝐹(𝑥0)| ≤
𝜀

2
 

We will denote 𝐹(𝑥) as the maximum and 𝐹(𝑥) as the minimum on the interval (𝑥 − 𝛿, 𝑥 + 𝛿), 

so 

𝐹(𝑥) − 𝐹(𝑥) <
𝜀

2
, 𝐹(𝑥) − 𝐹(𝑥) <

𝜀

2
 

Let 𝑝 be the probability of the inequality |𝑥 −
𝑖

𝑛
| > 𝛿 and 𝐿 the maximum of |𝐹(𝑥)| over the 

interval [0,1]. Then we obtain 
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𝐹(𝑥) ∙ (1 − 𝑝) − 𝐿𝑝 < 𝐸𝑛 < 𝐹(𝑥) + (𝐹(𝑥) − 𝐹(𝑥)) + 𝑝(𝐿 − 𝐹(𝑥)) 

So, 

𝐹(𝑥) −
𝜀

2
−

2𝐿

4𝐿
𝜀 < 𝐸𝑛 < 𝐹(𝑥) +

𝜀

2
+ 

2𝐿

4𝐿
𝜀 

Thus, we conclude 

|𝐹(𝑥) − 𝐸𝑛| < 𝜀 

∎ 

Example 1.1  

Suppose we wish to approximate the function sin(𝜃) over the interval 0 ≤ 𝜃 ≤ 2𝜋. Since the 

Bernstein polynomial is only defined over the interval [0, 1], we must shrink our function such 

that one period is traversed over [0, 1]. To achieve this, we transform sin(𝜃) into sin (2𝜋𝜃). 

Then our approximating polynomial, we will call 𝑓(𝑥), is  

sin(𝑡) ≈ ∑sin (
2𝜋𝑖

𝑛
) ∙ 𝐵𝑖

𝑛(𝑡)

𝑛

𝑖=0

 

Let 𝑛 = 3. Even at this low degree we already see the graph of 𝑓(𝑥) taking familiar shape, and 

the function is 

𝑓(𝑥) = sin(0)(1 − 𝑡)3 + 3sin (
2𝜋

3
) (1 − 𝑡)2𝑡 + 3sin (

4𝜋

3
) (1 − 𝑡)𝑡2 + sin (

𝜋

2
) 𝑡3 

=
3√3

2
(1 − 𝑡)2𝑡 −

3√3

2
(1 − 𝑡)𝑡2 + 𝑡3 
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Figure 1.2 Approximation of sin(𝜃) using the Bernstein polynomial of degree 3. 

 

 

 

Section 2 Bézier Curves 

Bézier curves are used extensively in computer graphics to model smooth curves. Rather than 

being defined by an equation directly, a Bézier curve is described by a series of control points of 

which the curve itself is an interpolation. This lends itself to being very simple to perform affine 

transformations on the curve since it is simply a matter of transforming control points rather than 

having to manipulate an equation. The curve is named after Pierre Bézier who was the first to 

utilize the curve in the application of designing automobiles. Paul de Casteljau first developed 

the curve for evaluating polynomials, but it was Bézier who popularized the curve’s use for 

modeling and design. The Bézier curve is defined as 

𝑩(𝑡) = ∑𝒃𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

, 0 ≤ 𝑡 ≤ 1 
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where 𝒃0, 𝒃1 , … , 𝒃𝑛 are the 𝑛 + 1 control points that describe the curve [3, pg. 141]. Some 

references on Bézier curves represent the control points as elements of ℝ𝑛 and parameterize an 

equation for each dimension, whereas others represent the control points as 𝑛-degree vectors. 

This paper will use the latter for conciseness and because it is the method used in computing 

applications. Now let’s examine some of the lower-degree Bézier curves. 

2.1 Linear Bézier curves 

Linear Bézier curves are Bézier curves where 𝑛 =  1, which implies that we are using two 

control points which we will call 𝒑0 and 𝒑1. Then the Bézier curve is 

𝑩(𝑡) = ∑𝒃𝑖𝐵𝑖
1(𝑡)

1

𝑖=0

= 𝒑0𝐵0
1(𝑡) + 𝒑1𝐵1

1(𝑡) 

                                                        = 𝒑0(1 − 𝑡) + 𝒑1𝑡,     0 ≤ 𝑡 ≤ 1 

The linear Bézier curve is defined on the closed interval [0, 1], such that the starting point of the 

curve is 𝑩(0) = 𝒑0 and the ending point is 𝑩(1) = 𝒑1 [3, pg. 136]. 

Example 2.1 

Let 𝒑0 = [
5
2
] , 𝒑1 = [

−3
−7

] be control points. Then the linear Bézier curve is 

𝑩(𝑡) = [
5
2
] (1 − 𝑡) + [

−3
−7

] 𝑡 



14 
 

 

Figure 2.1 Linear Bézier curve with control points (5, 2) and (-3, -7).  

2.2 Quadratic Bézier curves 

The Quadratic Bézier curve is a Bézier curve where 𝑛 = 2 and thus is specified by three control 

points 𝒑0, 𝒑1, and 𝒑2 and is defined as  

𝑩(𝑡) = ∑𝒃𝑖𝐵𝑖
2(𝑡)

2

𝑖=0

= 𝒑0𝐵0
2(𝑡) + 𝒑1𝐵1

2(𝑡) + 𝒑2𝐵2
2(𝑡) 

                                                                   = 𝒑0(1 − 𝑡)2 + 2𝒑1(1 − 𝑡)𝑡 + 𝒑2𝑡
2,     0 ≤ 𝑡 ≤ 1 

[3, pg. 136] 

Now for degree 𝑛 ≥ 2 we can connect the adjacent points together in what is called the control 

polygon. In this case the control polygon is the triangle 𝒑0𝒑1𝒑2 [3, pg. 136]. We will explore 

more about the control polygons ahead.  
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Example 2.2 

Let 𝒑0 = [
5
2
] , 𝒑1 = [

−3
−7

], 𝒑2 = [
−4
0

]  be control points. Then the quadratic Bézier curve is 

𝑩(𝑡) = [
5
2
] (1 − 𝑡)2 + 2 [

−3
−7

] (1 − 𝑡)𝑡 + [
−4
0

] 𝑡2 

 

Figure 2.2 Quadratic Bézier curve with control points (5, 2), (-3, -7), and (-4, 0).  

2.3 Cubic Bézier curves 

For 𝑛 = 3 we will have four control points 𝒑0, 𝒑1, 𝒑2, and 𝒑3. The Cubic Bézier curve is then 

𝑩(𝑡) = ∑𝒃𝑖𝐵𝑖
3(𝑡)

3

𝑖=0

= 𝒑0𝐵0
3(𝑡) + 𝒑1𝐵1

3(𝑡) + 𝒑2𝐵2
3(𝑡) + 𝒑3𝐵3

3(𝑡)                                                        

                                     = 𝒑0(1 − 𝑡)3 + 3𝒑1(1 − 𝑡)2𝑡 + 3𝒑2(1 − 𝑡)𝑡2 + 𝒑3𝑡
3, 0 ≤ 𝑡 ≤ 1                  

Example 2.3 

Let 𝒑0 = [
2
3
] , 𝒑1 = [

−2
6

], 𝒑2 = [
−5
4

], 𝒑3 = [
−6
0

]  be control points. Then the cubic Bézier curve 

is 
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𝑩(𝑡) = [
2
3
] (1 − 𝑡)3 + 3 [

−2
6

] (1 − 𝑡)2𝑡 + 3 [
−5
4

] (1 − 𝑡)𝑡2 + [
−6
0

] 𝑡3 

 

Figure 2.3. Cubic Bézier curve with control points (2, 3), (−2, 6), (−5, 4) and (−6, 0). 

Cubic Bézier curves are able to form shapes that quadratic Bézier curves cannot as they have the 

ability to form loops, cusps, and inflections [3, pg. 136]. We will examine more interesting 

properties of the Cubic Bézier curve, but first we need to establish how to differentiate a Bézier 

curve. 

 

Section 3 Derivatives of Bézier curves 

To differentiate a Bézier curve, we must first understand the derivative of the underlying 

Bernstein polynomial. 

Theorem 3.1. The derivative of a Bernstein polynomial is  

𝑑

𝑑𝑢
𝐵𝑖

𝑛(𝑢) = 𝑛 (𝐵𝑖−1
𝑛−1(𝑢) − 𝐵𝑖

𝑛−1(𝑢)) 

[3, pg. 163] 
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Proof. Taking the derivative of the Bernstein polynomial, we obtain 

𝑑

𝑑𝑢
𝐵𝑖

𝑛(𝑢) =
𝑑

𝑑𝑢
[(

𝑛

𝑖
) 𝑢𝑖(1 − 𝑢)𝑛−𝑖]                                                                                          

=
𝑛!

(𝑛 − 𝑖)! 𝑖!
[𝑖𝑢𝑖−1(1 − 𝑢)𝑛−𝑖 − 𝑢𝑖(𝑛 − 𝑖)(1 − 𝑢)𝑛−𝑖−1]            

                  =
𝑛!

(𝑛 − 𝑖)! (𝑖 − 1)!
∙ 𝑢𝑖−1(1 − 𝑢)𝑛−𝑖 −

𝑛!

(𝑛 − 𝑖 − 1)! 𝑖!
∙ 𝑢𝑖(1 − 𝑢)𝑛−(𝑖+1) 

= 𝑛 [(
𝑛 − 1
𝑖 − 1

) 𝑢𝑖−1(1 − 𝑢)𝑛−𝑖 − (
𝑛 − 1

𝑖
) 𝑢𝑖(1 − 𝑢)𝑛−(𝑖+1)]       

= 𝑛[𝐵𝑖−1
𝑛−1(𝑢) − 𝐵𝑖

𝑛−1(𝑢)]                                                                  

∎ 

Theorem 3.2. The derivative of a Bézier curve of degree 𝑛 is 

𝑩′(𝑡) = ∑ 𝑛(𝒃𝑖+1 − 𝒃𝑖)𝐵𝑖
𝑛−1(𝑡)

𝑛−1

𝑖=0

 

[3, pg. 163] 

Proof. Using the derivative of the Bernstein polynomial 𝐵𝑖
𝑛′(𝑡) =  𝑛 (𝑏𝑖−1

𝑛−1(𝑢) − 𝑏𝑖
𝑛−1(𝑢)) and 

the fact that 𝐵−1
𝑛−1(𝑡) = 𝐵𝑛

𝑛−1(𝑡) = 0, we get 

𝑩′(𝑡) = ∑𝒃𝑖𝐵𝑖
𝑛′(𝑡) = ∑𝒃𝑖𝑛 (𝐵𝑖−1

𝑛−1(𝑡) − 𝐵𝑖
𝑛−1(𝑡))

𝑛

𝑖=0

𝑛

𝑖=0

 

                                                   = ∑𝑛𝒃𝑖𝐵𝑖−1
𝑛−1(𝑡)

𝑛

𝑖=0

− ∑𝑛𝒃𝑖𝐵𝑖
𝑛−1(𝑡)

𝑛

𝑖=0
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                                                   = ∑𝑛𝒃𝑖𝐵𝑖−1
𝑛−1(𝑡)

𝑛

𝑖=0

− ∑ 𝑛𝒃𝑖𝐵𝑖
𝑛−1(𝑡)

𝑛−1

𝑖=0

 

                                                       = ∑ 𝑛𝒃𝑖+1𝐵𝑖
𝑛−1(𝑡)

𝑛−1

𝑖=0

− ∑ 𝑛𝒃𝑖𝐵𝑖
𝑛−1(𝑡)

𝑛−1

𝑖=0

 

                                  = ∑ 𝑛(𝒃𝑖+1 − 𝒃𝑖)𝐵𝑖
𝑛−1(𝑡)

𝑛−1

𝑖=0

 

∎ 

Corollary 3.1. The 𝑟th derivative of a Bézier curve of degree 𝑛 is  

𝑩(𝑟)(𝑡) = ∑ 𝒃𝑖
(𝑟)

𝐵𝑖
𝑛−𝑟(𝑡)

𝑛−𝑟

𝑖=0

 

where 

𝒃𝑖
(𝑟)

= 𝑛(𝑛 − 1)⋯(𝑛 − 𝑟 + 1)∑(−1)𝑟−𝑗 (
𝑟
𝑗)

𝑟

𝑗=0

𝒃𝑖+𝑗 

[3, pg. 164] 

Now that we are armed with the derivative, we can further explore properties of the cubic Bézier 

curve. The derivative of the cubic Bézier curve is 

𝑩′(𝑡) = −3(1 − 𝑡)2𝒃0 + 3(1 − 4𝑡 + 3𝑡2)𝒃1 + 3𝑡(2 − 3𝑡)𝒃2 + 3𝑡2𝒃3,    0 ≤ 𝑡 ≤ 1 

Then 𝑩′(0) = −3(𝒃1 − 𝒃0) which implies that the tangent of 𝑩(𝑡) at 𝑡 = 0, or 𝒃0, is in the 

same direction as the vector 𝒃0𝒃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Likewise, we see that 𝑩′(1) = 3(𝒃3 − 𝒃2). Hence, the final 



19 
 

point 𝒃3 of 𝑩′(𝑡) has the tangent equal to the direction of 𝒃2𝒃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. In both cases, we see that the 

magnitude of the tangent vector is 3 times the length of the line segment joining the control 

points. From this, we conclude that Bézier curves exhibit the endpoint tangent property. That is, 

the starting point and starting direction of the curve is dictated by the first two control points, and 

the end direction and endpoint is dictated by the two final points [3, pg. 138]. 

 

Section 4 Properties of Bézier Curves 

4.1 Convex Combinations 

What is it about the sequence of control points that influence the movement of the curve as we 

traverse 𝑡? To understand the movement, we first need to define convex combinations. 

Definition 4.1 Convex Combination 

Given a set of points 𝒑0,  𝒑1, … , 𝒑𝑛, we can form affine combinations of these points by selecting 

𝛼0, 𝛼1, … , 𝛼𝑛, such that 𝛼0 + 𝛼1 + ⋯+ 𝛼𝑛 = 1 and form the point  

𝒑 = 𝛼0𝒑0 + 𝛼1𝒑1 + ⋯+ 𝛼𝑛𝒑𝑛 

If 0 ≤ 𝛼𝑖 ≤ 1, then 𝒑 is called a convex combination of the points 𝒑0,  𝒑1, … , 𝒑𝑛 [4, pg. 6]. 

 

Theorem 4.1. A point 𝑩(𝑡) along a Bézier curve is a convex combination of the control points. 

Proof. Consider the Bézier curve formula 
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𝑩(𝑡) = ∑𝒃𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

, 0 ≤ 𝑡 ≤ 1 

Now substitute 𝛼𝑖 = 𝐵𝑖
𝑛(𝑡) and 𝒑𝑖 = 𝒃𝑖. Then 𝑩(𝑡) can be written in the form  

𝑩(𝑡) = 𝛼0𝒑0 + 𝛼1𝒑1 + ⋯+ 𝛼𝑛𝒑𝑛 where 𝛼0 + 𝛼1 + ⋯+ 𝛼𝑛 = 1 as the Bernstein polynomials 

form a partition of unity. Thus 𝑩(𝑡) is a convex combination of the points 𝒃𝑖, 0 ≤ 𝑖 ≤ 𝑛.  

∎ 

The Bézier curve being a convex combination gives us insight into why the curve behaves the 

way that it does as it traverses 𝑡. A point of a convex combination is simply a weighted average 

of its component points. 

 

Figure 4.1 and 4.2. Plotting 𝒑 as a convex combination of 𝒑0, 𝒑1, and 𝒑2. 

 

Thus, a single point, 𝑩(𝑡), is merely a weighted average of all its control points. Table 4.1 shows 

the weights of the individual terms of the cubic Bézier curve over 𝑡. We see that each term has 

an interval of 𝑡 where it gives its control point the greatest weight, thus giving that control point 

the greatest influence over the curve during that interval.  
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𝑡 (1 − 𝑡)3 3(1 − 𝑡)2𝑡 3(1 − 𝑡)2 𝑡3 

0 1 0 0 0 

0.1 0.729 0.243 0.027 0.001 

0.2 0.512 0.384 0.096 0.008 

0.3 0.343 0.441 0.189 0.027 

0.4 0.216 0.432 0.288 0.064 

0.5 0.125 0.375 0.375 0.125 

0.6 0.064 0.288 0.432 0.216 

0.7 0.027 0.189 0.441 0.343 

0.8 0.008 0.096 0.384 0.512 

0.9 0.001 0.027 0.243 0.729 

1 0 0 0 1 

 

Table 4.1. Weights of individual terms of the cubic Bézier curve over 𝑡 (greatest weight 

highlighted) 

Section 4.2 Convex Hull Property 

The convex hull property is an important property of Bézier curves that is used to derive 

algorithms for graphical rendering, and for finding the intersection of two Bézier curves. 

Definition 4.2 Convex Hull 

Given a set of points 𝑋 = {𝒙0, 𝒙1, … , 𝒙𝑛}, the convex hull of 𝑋, denoted as CH{𝑋}, is defined as 

the set of points 

CH{𝑋} = {𝑎0𝒙0 + 𝑎1𝒙1 + ⋯+ 𝑎𝑛𝒙𝑛 | ∑𝑎𝑖 = 1, 𝑎𝑖 ≥ 0

𝑛

𝑖=0

} 

[3, pg. 146] 
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The convex hull can be visualized by picturing points as pegs on a board, and then taking a 

rubber band and wrapping it around the outermost pegs such that every peg in within the 

perimeter of the rubber band.  

 

Figure 4.3. The convex hull of a set of points. 

Theorem 4.2. Convex Hull Property 

For all 𝑡, 0 ≤ 𝑡 ≤ 1, 𝑩(𝑡) ∈  CH{𝒃0, 𝒃1, … , 𝒃𝑛}. That is, every point of a Bézier curve lies inside 

the convex hull of its control points. The convex hull of the control points is referred to as the 

convex hull of the Bézier curve [3, pg. 147]. The proof follows directly from the Bézier curve’s 

property of being a partition of unity and is functionally identical to the proof in Theorem 4.1. 

 

Figure 4.4. The convex hull of a quadratic Bézier curve. 
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Section 4.3. Invariance Under Affine Transformations 

One of the great advantages of using Bézier curves is the simplicity of applying transformations, 

as a transformation of the curve is simply achieved by transforming its control points. It is 

important that these transformations preserve certain geometric properties in order to take 

advantage of this benefit.  

Theorem 4.3. Bézier curves are invariant under affine transformations. 

Let T bean affine transformation. Then  

T(∑𝒃𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

) = ∑T(𝒃𝑖)𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

 

[3, pg. 147] 

Proof. Let T be an affine transformation given by (𝑥′, 𝑦′) = (𝑎𝑥 + 𝑏𝑦 + 𝑐, 𝑑𝑥 + 𝑒𝑦 + 𝑓) and let 

a Bézier curve 𝑩(𝑡) of degree 𝑛 have control points 𝒃𝑖 for 0 ≤ 𝑖 ≤ 𝑛. Then 

𝑩(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) = (∑𝑝𝑖𝐵𝑖
𝑛(𝑡),∑𝑞𝑖𝐵𝑖

𝑛(𝑡)

𝑛

𝑖=0

𝑛

𝑖=0

) 

Then apply the transformation and get 

T(𝑩(𝑡)) = (𝑎 ∑𝑝𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

+ 𝑏 ∑𝑞𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

+ 𝑐, 𝑑 ∑𝑝𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

+ 𝑒∑𝑞𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

+ 𝑓) 

Because of the partition of unity property, that is,  

∑𝐵𝑖
𝑛(𝑡) =

𝑛

𝑖=0

1, 
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T(𝑩(𝑡)) = (𝑎∑𝑝𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

+ 𝑏 ∑𝑞𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

+ 𝑐 ∑𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

, 𝑑 ∑𝑝𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

+ 𝑒∑𝑞𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

+ 𝑓 ∑𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

) 

= (∑(𝑎𝑝𝑖 + 𝑏𝑞𝑖 + 𝑐)

𝑛

𝑖=0

𝐵𝑖
𝑛(𝑡),∑(𝑑𝑝𝑖 + 𝑒𝑞𝑖 + 𝑓)

𝑛

𝑖=0

𝐵𝑖
𝑛(𝑡))                       

= ∑(𝑎𝑝𝑖 + 𝑏𝑞𝑖 + 𝑐, 𝑑𝑝𝑖 + 𝑒𝑞𝑖 + 𝑓)

𝑛

𝑖=0

𝐵𝑖
𝑛(𝑡)                                                  

= ∑T(𝒃𝑖)𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

                                                                                                

∎ 

Section 4.4 Other Properties 

The remaining properties are generalized results of what we have already explored and were 

implicitly mentioned, but are stated here explicitly for completeness.  

Endpoint Interpolation Property: 𝑩(0) = 𝒃0 and 𝑩(1) = 𝒃1 

Endpoint Tangent Property: 𝑩′(0) = 𝑛(𝒃1 − 𝒃0) and 𝑩′(1) = 𝑛(𝒃𝑛 − 𝒃𝑛−1) 

 

 

 



25 
 

Section 5 The de Casteljau Algorithm 

The de Casteljau algorithm gives us a simple method of evaluating a point on a Bézier curve for 

a given 𝑡 ∈ [0,1]. Geometrically, it works by finding points along each side of the control 

polygon, where each point is length along the side is proportional to 𝑡. Using these points, it 

creates a new polygon which has one less side than the previous. The process is repeated 𝑛 times 

until we obtain a single point which is along the curve. We will first define and prove the general 

algorithm, then we will explore some examples with the cubic Bézier curve. 

Section 5.1 Defining the de Casteljau Algorithm 

Theorem 5.1. The de Casteljau algorithm 

Let a Bézier curve, 𝑩(𝑡), of degree 𝑛 be defined by control points 𝒃0, 𝒃1, … , 𝒃𝑛 and 𝑡 ∈ [0, 1]. 

Then 𝑩(𝑡)=𝒃0
𝑛, where  

{
𝒃0

𝑖 = 𝒃𝑖                                  

𝒃𝑖
𝑗
= (1 − 𝑡)𝒃𝑖

𝑗−1
+ 𝑡𝒃𝑖+1

𝑗−1 

For 𝑗 = 1,… , 𝑛, and 𝑖 = 0, … , 𝑛 − 𝑗. 

Proof. Recall the recursion property of the Bernstein polynomials, that is,  

𝐵𝑖
𝑛(𝑡) = (1 − 𝑡)𝐵𝑖

𝑛−1(𝑡) + 𝑡𝐵𝑖−1
𝑛−1(𝑡) 

So  

𝑩(𝑡) = ∑𝒃𝑖𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0

= ∑𝒃𝑖((1 − 𝑡)𝐵𝑖
𝑛−1(𝑡) + 𝑡𝐵𝑖−1

𝑛−1(𝑡))

𝑛

𝑖=0
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= ∑𝒃𝑖(1 − 𝑡)𝐵𝑖
𝑛−1(𝑡) + ∑𝒃𝑖𝑡𝐵𝑖−1

𝑛−1(𝑡)

𝑛

𝑖=0

𝑛

𝑖=0

 

Since 𝐵𝑛
𝑛−1(𝑡) = 𝐵−1

𝑛−1(𝑡) = 0, 

𝑩(𝑡) = ∑ 𝒃𝑖(1 − 𝑡)𝐵𝑖
𝑛−1(𝑡) + ∑𝒃𝑖𝑡𝐵𝑖−1

𝑛−1(𝑡)

𝑛

𝑖=1

𝑛−1

𝑖=0

 

Now we modify the second summation by replacing 𝑖 with 𝑖 + 1 

𝑩(𝑡) = ∑ 𝒃𝑖(1 − 𝑡)𝐵𝑖
𝑛−1(𝑡) + ∑ 𝒃𝑖+1𝑡𝐵𝑖

𝑛−1(𝑡)

𝑛−1

𝑖=0

𝑛−1

𝑖=0

 

= ∑(

𝑛−1

𝑖=0

𝒃𝑖(1 − 𝑡) + 𝒃𝑖+1𝑡) 𝐵𝑖
𝑛−1(𝑡) 

Setting 𝒃𝑖
1 = 𝒃𝑖(1 − 𝑡) + 𝒃𝑖+1𝑡 = 𝒃𝑖

0(1 − 𝑡) + 𝒃𝑖+1
0 𝑡 for 𝑖 = 0,… , 𝑛 − 1, we obtain 

 

𝑩(𝑡) = ∑ 𝒃𝑖
1𝐵𝑖

𝑛−1(𝑡)

𝑛−1

𝑖=0

 

Which gives 𝑩(𝑡) as a Bézier curve of degree 𝑛 − 1 with control points 𝒃0
1, 𝒃1

1, … , 𝒃𝑛−1
1 . 

Following this same logic, we see that 

𝑩(𝑡) = ∑ 𝒃𝑖
2𝐵𝑖

𝑛−2(𝑡)

𝑛−2

𝑖=0

 

where 𝒃𝑖+1
2 = 𝒃𝑖

1(1 − 𝑡) + 𝒃𝑖+1
1 𝑡 for 𝑖 = 0,… , 𝑛 − 2. So again, following the same argument, we 

see that in general 
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𝑩(𝑡) = ∑𝒃𝑖
𝑗
𝐵𝑖

𝑛−𝑗(𝑡)

𝑛−𝑗

𝑖=0

 

Where 𝒃𝑖
𝑗
= 𝒃𝑖

𝑗−1(1 − 𝑡) + 𝒃𝑖+1
𝑗−𝑖

𝑡 for 𝑖 = 0,… , 𝑛 − 𝑗. In the case where 𝑗 = 𝑛, we see that 

𝑩(𝑡) = ∑𝒃𝑖
𝑛𝐵𝑖

𝑛−𝑛(𝑡)

0

𝑖=0

= 𝒃0
𝑛 

[3, pg. 152]∎ 

The de Casteljau algorithm can be visualized as a triangular set of values where 𝑩(𝑡) = 𝒃0
𝑛 for a 

given 𝑡. The following is a triangular set that corresponds to a cubic Bézier curve. We will show 

how these are computed in example 5.1. 

𝒃0
0    𝒃1

0    𝒃2
0    𝒃3

0 

𝒃0   
1   𝒃1

1    𝒃2
1         

𝒃0
2    𝒃1

2                 

𝒃0
3                          

Example 5.1 

Let’s consider the cubic Bézier curve from example 2.3 that is defined by the control points 

(2, 3), (−2, 6), (−5, 4) and (−6, 0). We are interested in finding the point along the curve 

𝑩(0.25). We will build up the terms of the formula and work our way to 𝒃0
3. The top row of the 

triangle, that is, the terms 𝒃𝑖
0, 𝑖 = 0…3, are simply our control points that form the foundation of 

the formula. We begin by computing the 2nd row down on the triangle, that is, 𝒃𝑖
1, 𝑖 = 0…2. 
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𝒃0
1 = .75 [

2
3
] + .25 [

−2
6

] = [
1

3.75
]                    

𝒃1
1 = .75 [

−2
6

] + .25 [
−5
4

] = [
−2.75
5.5

]              

𝒃2
1 = .75 [

−5
4

] + .25 [
−6
0

] = [
−5.25

3
]              

Now we use these results for our computations as we move on to the 3rd row down. 

𝒃0
2 = .75 [

1
3.75

] + .25 [
−2.75
5.5

] = [
0.0625
4.1875

]    

𝒃1
2 = .75 [

−2.75
5.5

] + .25 [
−5.25

3
] = [

−3.375
4.875

] 

Again, we use these for our computations in the final row. 

                                  𝒃0
3 = .75 [

0.0625
4.1875

] + .25 [
−3.375
4.875

] = [
−0.796875
4.35938

] =  𝑩(0.25) 

 

Figure 5.1. 𝑩(0.25) calculated using the de Casteljau algorithm. 
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Section 5.2 Subdivision of a Bézier curve 

A Bézier curve is defined over the interval [0, 1], but there are times when we may wish to deal 

with a portion of the curve. A common operation in vector graphics is to split a curve at a point, 

allowing one portion to remain the same while the other is manipulated. We can choose some 

𝑡 = 𝛼 along the curve to split it into two curves such that the left portion of the curve is denoted 

𝑩𝑙𝑒𝑓𝑡(𝑡), and the right portion is 𝑩𝑟𝑖𝑔ℎ𝑡(𝑡) where 𝑩𝑙𝑒𝑓𝑡(𝑡) is defined over the interval [0, 𝛼], and 

𝑩𝑟𝑖𝑔ℎ𝑡(𝑡) is defined over [𝛼, 1]. Since 𝑩𝑟𝑖𝑔ℎ𝑡(𝑡) and 𝑩𝑙𝑒𝑓𝑡(𝑡) are polynomial curves, they can 

both individually be described by some Bézier curve on the interval [0, 1]. 

Theorem 5.2. Subdividing a Bézier curve. 

For a general a Bézier curve 𝑩(𝑡) = ∑ 𝒃𝑖𝐵𝑖
𝑛(𝑡)𝑛

𝑖=0 , the control points of the two curve segments 

obtained by subdivision at a parameter value 𝑡 are 𝒃0
0, 𝒃0

1, … , 𝒃0
𝑛−1, 𝒃0

𝑛 for 𝑩𝑙𝑒𝑓𝑡(𝑡) and 

𝒃0
𝑛, 𝒃1

𝑛−1, … , 𝒃𝑛−1
1 , 𝒃𝑛

0  for 𝑩𝑟𝑖𝑔ℎ𝑡(𝑡), where 𝒃𝑖
𝑗
 are the points computed in the de Casteljau 

algorithm.  

Proof. Let 𝑩(𝑡) be a Bézier curve of degree 𝑛. First note that  

𝒃0
𝑛 = 𝑩(𝑡) = ∑𝒃𝑖𝐵𝑖

𝑛(𝑡)

𝑛

𝑖=0

 

So, through this relationship, we then have the formula for any 𝒃0
𝑘, 0 ≤ 𝑘 ≤ 𝑛, that is, any term 

along the leftmost column of the triangular set, which is  

𝒃0
𝑘 = ∑𝒃𝑖𝐵𝑖

𝑘(𝑡)

𝑘

𝑖=0
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which can be interpreted as the Bézier curve defined by the first 𝑘 control points of 𝑩(𝑡). Now 

consider the Bézier curve defined by the points along the leftmost column of the triangular set, 

that is, {𝒃0
0, 𝒃0

1, … , 𝒃0
𝑛−1, 𝒃0

𝑛}. We denote this curve 𝑩′(𝑡). Then 

𝑩′(𝑢) = ∑ 𝒃0
𝒌𝐵𝑘

𝑛(𝑢)

𝑛

𝑘=0

 

We use 𝑢 as the parameter to avoid confusion as the domain of this curve is [1, 𝑡] for an arbitrary 

but fixed 𝑡. Substituting our previous formula for 𝒃0
𝒌, we obtain 

𝑩′(𝑢) = ∑ [∑𝒃𝑖𝐵𝑖
𝑘(𝑡)

𝑘

𝑖=0

] 𝐵𝑘
𝑛(𝑢)

𝑛

𝑘=0

 

Note that 𝑩′(𝑡) is still defined by the original set of control points in 𝑩(𝑡). Now we will examine 

the coefficient of 𝒃𝑖. Consider the coefficient, we will call 𝑎, of 𝒃ℎ for some ℎ ≤ 𝑘. 

𝑎 = 𝐵ℎ
𝑛(𝑢)𝐵ℎ

ℎ(𝑡) + 𝐵ℎ+1
𝑛 (𝑢)𝐵ℎ

ℎ+1(𝑡) + ⋯+ 𝐵𝑛
𝑛(𝑢)𝐵ℎ

𝑛(𝑡) 

= ∑ 𝐵ℎ+𝑗
𝑛 (𝑢)𝐵ℎ

ℎ+𝑗(𝑡)

𝑛−ℎ

𝑗=0

 

= ∑ [
𝑛!

(ℎ + 𝑗)! (𝑛 − (ℎ + 𝑗))!
𝑢ℎ+𝑗(1 − 𝑢)𝑛−(ℎ+𝑗)] [

(ℎ + 𝑗)!

ℎ! 𝑗!
𝑡ℎ(1 − 𝑡)𝑗]

𝑛−ℎ

𝑗=0

 

=
𝑛!

ℎ!
(𝑡𝑢)ℎ ∑

1

((𝑛 − ℎ) − 𝑗)! 𝑗!
[𝑢(1 − 𝑡)]𝑗[(1 − 𝑢)(𝑛−ℎ)−𝑗]

𝑛−ℎ

𝑗=0

 

Multiplying the summation by (𝑛 − ℎ)! to put it in the binomial expansion form, 
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=
𝑛!

ℎ! (𝑛 − ℎ)!
(𝑡𝑢)ℎ ∑

(𝑛 − ℎ)!

((𝑛 − ℎ) − 𝑗)! 𝑗!
[𝑢(1 − 𝑡)]𝑗[(1 − 𝑢)(𝑛−ℎ)−𝑗]

𝑛−ℎ

𝑗=0

 

Using the binomial expansion formula, we get  

∑
(𝑛 − ℎ)!

((𝑛 − ℎ) − 𝑗)! 𝑗!
[𝑢(1 − 𝑡)]𝑗[(1 − 𝑢)(𝑛−ℎ)−𝑗]

𝑛−ℎ

𝑗=0

= [𝑢(1 − 𝑡) + (1 − 𝑢)]𝑛−ℎ 

= (1 − (𝑡𝑢))𝑛−ℎ 

Therefore, the coefficient 𝑎 is 

𝑎 =
𝑛!

ℎ! (𝑛 − ℎ)!
(𝑡𝑢)ℎ(1 − (𝑡𝑢))𝑛−ℎ = 𝐵ℎ

𝑛(𝑡𝑢) 

Therefore, we see that 

𝑩′(𝑢) = ∑ 𝒃ℎ𝐵ℎ
𝑛(𝑡𝑢)

𝑛

ℎ=0

= 𝑩(𝑡𝑢) 

So as 𝑢 varies from 0 to 1, 𝑡𝑢 varies from 0 to 𝑡. Thus, 𝑩′(𝑢) on the interval [0, 1] describes the 

same curve as 𝑩(𝑡) on the interval [0, 𝑡]. The same procedure can be used to show that the points 

𝒃0
𝑛, 𝒃1

𝑛−1, … , 𝒃𝑛−1
1 , 𝒃𝑛

0  are the control points for a Bézier curve that is equivalent to 𝑩(𝑡) on the 

interval [0, 𝑡]. 

∎ 

Section 6 Further Reading 

Much of the literature on Bézier curves is written for and by graphics programmers. Naturally, 

these works are focused on application rather than theory. It was an interesting journey sifting 



32 
 

through several works trying to extract enough content to provide sufficient mathematical depth 

for this paper. This paper, having gone so far in depth of the study of the Bézier curves, risks 

causing the reader to miss their simplistic beauty, especially in their modern applications. It is 

highly encouraged that if the reader is interested in this topic, that they explore further works that 

are more tailored to Bézier curves’ graphical applications so they can appreciate the beauty of 

the simplicity of the curve. 
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